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ABSTRACT

Quantitative MR studies often utilize sequences of coregis-
tered images, where the contrast in each image frame is exper-
imentally manipulated to enable the regression of important
physical parameters. However, the potential of these exper-
iments has been limited for high-resolution biological stud-
ies because of long acquisition times and limited signal-to-
noise ratio. This work presents a new approach for the re-
construction of an image sequence from noisy data, using a
statistical model that incorporates an implicit line-site prior to
take advantage of the high level of inter-frame correlation be-
tween spatial image features. Reconstructions are efficiently
computed using a globally-convergent half-quadratic iterative
algorithm, and the proposed optimization procedure enables
precise characterization of resolution and noise properties.

Index Terms— magnetic resonance imaging, image re-
construction, denoising, half-quadratic regularization, image
sequences

1. INTRODUCTION

Contrast in MR images is dependent on both the physical
properties of the imaging subject and on the experimental pa-
rameters used to acquire data. The goal of many quantitative
MR experiments is to directly estimate these physical charac-
teristics, since this higher-level information can provide direct
insight into the structure, function, and viability of biological
tissues.
In practice, most quantitative MR experiments (e.g., dif-

fusion imaging, perfusion imaging, and relaxometry) acquire
a sequence of coregistered images, where the contrast of each
image frame is carefully manipulated. The contrast variations
observed in each voxel of the image sequence are then fit to
an appropriate physical model of the contrast mechanism, fi-
nally resulting in quantitative spatial maps of the parameters
of interest.
In this work, we consider the case where a length-Q se-

quence of coregistered images is acquired with different con-
trasts from a static object. If we let dq (km) represent the
acquired k-space data for the qth image frame, and let ρq (x)
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Fig. 1. Three frames from a DSI image sequence. Due to
the large number of frames required for DSI (i.e., Q = 515),
full DSI acquisitions can take more than 25 minutes, and the
resulting data still suffers from relatively low resolution and
SNR. (Data courtesy of Dr. V. J. Wedeen of the MGH Mar-
tinos Center for Biomedical Imaging and Harvard Medical
School)

represent the corresponding image, then the acquired experi-
mental data can be modeled as

dq (km) =

∫
ρq (x) exp (−ı2πkm · x) dx + ηmq,

m ∈ {0, 1, . . . , M − 1} , q ∈ {1, 2, . . . , Q}
, (1)

whereM is the total number of spatial encodings and ηmq is
complex white Gaussian noise with variance σ2.
There are two important practical limitations for these imag-

ing schemes. First, the imaging time is inherently long due to
the number of samples that must be collected to sufficiently
encode the physical properties of interest with sufficient spa-
tial resolution. Second, depending on the specific contrast
mechanisms utilized by the experiment, the data can have
very low signal-to-noise ratio (SNR). This is especially prob-
lematic, because it further limits the achievable imaging speed.
As a result, many quantitative in vivo MR experiments use
relatively large voxel sizes (i.e., 3-5 mm or more along each
dimension), and still suffer from limited SNR. Figure 1 illus-
trates these effects using a typical example from human brain
diffusion spectrum imaging (DSI) [1].
This paper proposes a new method to address the SNR

problem. The method utilizes a specially-designed statisti-
cal reconstruction that performs joint estimation of the entire
image sequence, and exploits the shared structure inherent to
these kinds of experiments.

752978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



2. PROPOSEDMETHOD

2.1. Joint Feature-Preserving Statistical Reconstruction

We propose to reconstruct the set of image frames using a
quasi-Bayesian optimality criterion{

ρ̂1, ρ̂2, . . . , ρ̂Q

}
=

argmin
{ρ1,ρ2,...,ρQ}

⎧⎪⎨
⎪⎩

[
Q∑

q=1

w2
q

∥∥Fρq − dq

∥∥2

2

]

+λR
(
ρ1, ρ2, . . . ,ρQ

)
⎫⎪⎬
⎪⎭ ,

(2)

where F represents the Fourier imaging operator, ρq is the
length-N vector of voxel coefficients for the qth image frame,
dq is the corresponding length-M vector of data samples, the
wq are weighting parameters which will be discussed later in
this section, λ is a regularization parameter, and R (·) is a reg-
ularization functional. In this framework, choosing R (·) to
appropriately incorporate prior information is essential, and
this paper determines R (·) based on the following considera-
tions:

• Images from typical MRI experiments usually consist
of “smooth” regions separated by edges. Smoothness
constraints can be used to reduce the effects of noise,
although edges need to be preserved to avoid amplify-
ing partial volume effects.

• The edge structures seen in different frames of an image
sequence have strong correlation. For example, object
support boundaries will exist in every image, regard-
less of the image contrast. Edge structures should be
imposed in a joint fashion.

• Resolution and SNR properties of the resulting recon-
structions should be characterizeable. Moreover, it is
important that different reconstructed image frames have
identical resolution properties, so that the same voxel in
different image frames accurately reflects signal from
the same spatial spin population. This is necessary to
ensure the validity of any parametric voxel-by-voxel
model-fitting procedure that would follow reconstruc-
tion of the image sequence.

• The resulting reconstruction should be relatively insen-
sitive to the choice of regularization parameters and ini-
tialization.

Based on the above factors, we choose a joint smoothness
prior of the form

R
(
ρ1, ρ2, . . . ,ρQ

)
=

N∑
n=1

∑
m∈Ωn
m>n

Ψ

⎛
⎝

√√√√ Q∑
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w2
q |ρq,n − ρq,m|2

⎞
⎠ ,

(3)

where Ωn is the set of all voxels adjacent to the nth voxel,
and Ψ (·) is an appropriate robust-statistical cost function. It
can be shown (e.g., following derivations in [2, 3]) that this
choice is equivalent to imposing a quasi-Bayesian line-site
prior on the image frames. The line-site prior, first proposed
by Geman and Geman [4], provides a natural way to model
the edge structure within images. It does this by imposing
that spatially-adjacent voxels are related to each other through
new variables called line-sites, which are used to explicitly
model this structure. The quasi-Bayesian restoration problem
of Eq. 2 is then equivalent to jointly estimating the image and
its edge structure, where the edge modeling allows for the
preservation of important image features.
In contrast to reconstruction algorithms which impose a

line-site prior to each frame independently, Eq. 3 results in a
line-site prior that is shared between all image frames. The
proof of this follows from the derivations in [2, 3], and the
shared edge map will appear explicitly in the proposed opti-
mization scheme. The use of a shared edge map leverages the
correlation between different frames to improve the quality of
the jointly-reconstructed images.
In what follows, we shall consider Ψ (·) functions of the

form

Ψ (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2
β

(
t2 + ε

) β
2 − 2ε

β
2

β
, when 0 ≤ t < α

2
(
α2 + ε

) β−1
2
√

t2 + ε− 2ε
β
2

β

−2
(
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β
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when t ≥ α

(4)

where ε is a small positive number (we use ε = 10−10), β

is a number such that 1 ≤ β < 2 (we use β = 1.99), and
α is nonnegative. This cost function may look complicated,
but is actually proportional to a simple approximation of Hu-
ber’s minimax robust estimator, which was modified to ensure
convergence of our proposed algorithm for optimizing Eq. 2
and to simplify notation in future equations. Huber’s mini-
max estimator has been used previously in image processing
(see [3] and its references for further discussion). The param-
eter α plays a special role in this situation; essentially, the
magnitude of an edge has to be stronger than α to be declared
as an edge. Therefore, using a larger α improves robustness
against declaring false edges, though also makes it easier to
not identify actual edge structures. Note that with α = 0
and Q = 1, Eq. 3 is the penalty functional associated with a
common formulation of the ubiquitous Total Variation regu-
larization problem.

2.2. Optimization Algorithm

With the robust cost function of Eq. 4, the following half-
quadratic optimization procedure is guaranteed to converge to
the unique optimal solution from any initialization [5–7], as
long as the acquisition includes k = 0, the center of k-space.
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1. As a first step, set the estimated image sequence equal
to an initial guess

{
ρ̂

(0)
1 , ρ̂

(0)
2 , . . . , ρ̂

(0)
Q

}
(e.g., set all

voxel values based on an initial noisy Fourier recon-
struction). A good initial guess is not essential, because
the proposed algorithm converges to the unique optimal
solution from any starting point.

2. At the jth iteration, define line-site variables for each
voxel pair as


(j)
n,m =
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t
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”2
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, t
(j)
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where t
(j)
n,m is given by

t(j)n,m =

√√√√ Q∑
q=1

w2
q

∣∣∣ρ(j)
q,n − ρ

(j)
q,m

∣∣∣2. (6)

3. Update each image frame according to

ρ̂
(j+1)
q = arg min

ρq

∥∥Fρq − dq

∥∥2

2
+ λR(j)

(
ρq

)
, (7)

with

R(j)
(
ρq

)
=

N∑
n=1

∑
m∈Ωn
m>n


(j)
n,m |ρq,n − ρq,m|2 . (8)

Note that this is a purely quadratic optimization prob-
lem, and has the closed form solution

ρ̂
(j+1)
q =

(
F

H
F + λD

H
W

(j)
D

)−1

F
H
dq, (9)

where D is a sparse matrix such that Dρq computes
finite differences of the form (ρq,n − ρq,m), andW

(j)

is a diagonal matrix with diagonal elements equal to
the line-site variable 


(j)
n,m for the corresponding finite

difference computed by D. While all the matrices in
Eq. 9 are very large, they are also highly structured, so
the matrix inversion can be performed efficiently using
standard iterative methods like the conjugate-gradient
algorithm.

4. Repeat steps 2 and 3 until the iterations converge, i.e.,

when
∥∥∥ρ̂

(j+1)
q − ρ̂

(j)
q

∥∥∥2

2
is negligible for each image

frame. At convergence, the reconstructed images will
be the unique optimal solution to the original quasi-
Bayesian problem.

Note that the iterative procedure uses line-sites, and that the
value of the line-site depends on a weighted average edge-
strength seen in all images through Eq. 6, where the weight-
ing is defined through the wq parameters. Setting wq = 1
for all images can be problematic, as it will give unequal
weight to images which are scaled differently from one an-
other. For example, in DSI, images with very light diffusion
weighting typically have much larger intensities relative to
images with high amounts of diffusion weighting. In such a
case and with wq = 1, the estimated edge-maps will be dom-
inated by structures visible in the images with low amounts
of diffusion weighting. As can be seen in Fig. 1, this type of
weighting will neglect some of the higher-level structures that
only become apparent with high levels of diffusion weight-
ing. We generally choose the wq parameters inversely pro-
portional to the average magnitude of the signal within the
parenchyma from a noisy reconstruction of the correspond-
ing image frame.

2.3. Properties

The proposed method has several desirable properties. First,
as illustrated by Eq. 9, for a given estimated edge map, the es-
timated image ρ̂q (x) is linearwith respect to the data dq (km).
This linearity provides analytic methods to analyze the reso-
lution and noise properties of the reconstructed image, similar
to what is done in [8]. In particular, we can define a spatial
response function (SRF) for each voxel, which is similar to
the point spread function typically used to characterize reso-
lution in conventional image reconstruction. Specifically, the
SRF for the nth voxel is given by

hn (x) =

M∑
m=1

Gnme−i2πkm·x, (10)

whereGnm are entries from the reconstructionmatrix in Eq. 9.
It is easy to show that the value of the nth reconstructed voxel
coefficient is given by

ρ̂q,n =

∫
ρq (x)hn (x) dx + η̄n, (11)

where η̄n is a zero-mean Gaussian random variable with vari-
ance

σ2
∑
m

|Gnm|2 . (12)

It is important to note that while the SRF may be position
dependent, the proposed method guarantees that the differ-
ent image frames share the same SRFs, and thus have identi-
cal resolution and noise properties. Thus, the spin population
represented by a given voxel is consistent for every image. In
addition, unlike approximate characterizations using the lo-
cal impulse response [9], Eqs. 10 and 12 are valid even if the
iterative procedure is halted prior to convergence.
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Second, analysis of SRFs shows that reconstruction in-
cluding an edge map has a number of nice advantages. As
expected, both the noise variance and resolution of recon-
structed images decreased as stronger emphasis is placed on
image smoothness by increasing λ. This is the same type of
effect typically seen when apodization is applied in standard
Fourier reconstruction. However, by using an edge map, we
can prevent signal from leaking across a known edge, and can
thus avoid exacerbating partial volume effects, ensuring that
local signal averaging is only performed in regions that should
be relatively homogeneous in the first place. The regulariza-
tion parameter λ can be chosen based on the desired trade-off
between resolution and SNR.
Third, the reconstruction results are not sensitive to the

initialization of the algorithm, and are less sensitive to the
choice of reconstruction parameters relative to nonconvex ap-
proaches. It is also worth pointing out that the proposed algo-
rithm reconstructs images directly from the acquired k-space
data, which allows us to accomodate non-Cartesian k-space
trajectories and parallel imaging in a statistically optimal way,
and avoid the spatial noise correlation and ringing artifacts re-
sulting from zero-padding or non-Cartesian reconstruction.

3. RESULTS

Figures 2 and 3 show the results of the proposed algorithm ap-
plied to two different diffusion imaging experiments. While
the resolution in smooth regions of the image is slightly re-
duced, high-quality reconstructions are achievable in a frac-
tion of the previously-required imaging time.

4. CONCLUSION

This paper presents a novel method for the joint reconstruc-
tion of different frames in an image sequence. The formula-
tion uses the link between robust statistics and half-quadratic
regularization to develop a quasi-Bayesian prior that is well-
suited for the preservation of joint image features. The pro-
posed optimization procedure is globally-convergent, and en-
ables precise characterization of the final resolution and noise
properties.
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